Monday, October 12, 2009

"Mirror symmetry, Langlands duality, and the Hitchin system"

Today, at the Geometry and Analysis Seminar organized by Nigel Hitchin, Tamas Hausel talked about his paper with Michael Thaddeus Mirror symmetry, Langlands duality, and the Hitchin system. The room was packed. He started by giving some background informations about the three concepts in his title.

Mirror symmetry

The basic idea is that the symplectic geometry of a d-dimensional Calabi-Yau manifold $X$ can be related to the complex geometry of another CY manifold $Y$. There is a topological test of this relation, referred to as topological mirror symmetry, which equates (mirror pairs of) Hodge numbers of the two CYs:
\[ h^{p,q} (X) = h^{d-p,q}(Y)~. \]
Note that any hyperkaehler manifold satisfies $h^{p,q} (X) = h^{d-p,q}(X)$, so in a certain sense TMS is already built-in. Tamas mentioned two important developments in the history of mirror symmetry: homological mirror symmetry proposed by Kontsevich in 1994, which reads
\[
\mathcal{D}^b (\text{Fuk}(X,\omega)) \cong \mathcal{D}^b (\text{Coh}(Y,I))~,
\] where $\omega$ is the symplectic form and $I$ the complex structure. Another breakthrough was the geometric construction of $Y$ from $X$ elaborated by Strominger, Yau and Zaslow in 1996.

Langlands duality

The aim of the Langlands program is to describe $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ via representation theory.
To each reductive group $G$ is associated a Langlands dual $^LG$. The Langlands conjecture leads for instance to class field theory, in the case $G=GL_1$; in the case $G=GL_2$, it leads to the Taniyama-Shimura conjecture (which is famous because it implies Fermat's last theorem). An important progress towards the proof of the conjecture was made by Ngo in 2008 with his proof of the fundamental lemma for the function field $\mathbb{F}_q(X)$.
There is a geometric version of the conjecture, obtained by replacing $\mathbb{F}_q(X)$ by $\mathbb{C}(X)$ for $X/\mathbb{C}$ (Laumon 1987, Beilinson & Drinfeld 1995):
\[
\{ G\text{-local systems on $X$} \}
\]\[
\leftrightarrow \{ \text{Hecke eigensheaves on Bun$_{^LG}(X)$}\}~.\]
Hitchin systems

Recall that a Hamiltonian system $(X^{2d}, \omega)$ has an energy functional $H: X\to \mathbb{R}$ and an Hamiltonian vector field $X_H$ such that $\text{d}H=\omega(X_H,\cdot)$. A function $f:X\to \mathbb{R}$ is a first integral if $X_H f = \omega(X_H, X_f) =0$ (involution). The system is completely integrable if there is $d$ first integrals. The generic fibre is then a torus (examples: Euler and Kovalevskaya tops, spherical pendulum).
An algebraic version is obtaiend by replacinf $\mathbb{R}$ by $\mathbb{C}$, and many examples can be formulated as Hitchin systems (1987).

Now I cannot say I completely followed the rest of the talk in all its glory, but I'll try to restate what I understood. Tamas was considering different moduli spaces, which are all smooth non-compact varieties: $\mathcal{M}_{\text{Dol}}^d (G)$ is the moduli space of rank $n$ and degree $d$ Higgs bundles $(E,\phi)$, $\mathcal{M}_{\text{DR}}^d (G)$ is the moduli space of flat $G$-connections on a genus $g$ curve, $\mathcal{M}_{\text{B}}^d (G)$ is yet another thing -- but they're all equivalent by a non-Abelian Hodge theorem. The Hitchin map $\chi(\phi)$ is completely integrable and its fibre $\chi^{-1}(a)$ is a torsor.

Inspired by the SYZ conjecture, Hausel and Thaddeus noticed in 2003 that $\chi^{-1}_{SL_n}(a)$ and $\chi^{-1}_{PGL_n}(a)$ are torsors for dual Abelian varieties. (I think this means they are related by T-duality on the toroidal Hitchin fibres, but he said "fibrewise Fourier-Mukai tranform" instead :)

A confirmation that their conjecture are more or less sane came from the 2006 work of Kapustin and Witten on S-duality (electric-magnetic duality) in $\mathcal{N}=4$ super-Yang-Mills in four dimensions, which Tamas qualified as "a major work" with many fertile ideas. (In fact T-duality in the Hitchin moduli space corresponds to S-duality in the gauge theory, see Witten's Strings on the Beach! talk in 2005.)

Using stringy Hodge numbers (also known as "orbifold cohomology") Tamas made a conjecture with a TMS test, but he also made another one using mixed Hodge numbers.
His final questions were: "Why two conjectures? Why same Hodge numbers instead of mirrored ones? Why Geometric Langlands and not classical Langlands?

He ended up by mentioning a curious hard Lefschetz conjecture for weight and perverse filtrations that left the crowd speechless.

No comments: